Protection from Outdoor Smoking

Why is Outdoor Smoking a Public Health Issue?

For many years, we advised smokers to “take it outside” to provide protection from circulating indoor smoke. Now, new research shows that physical exposure to outdoor tobacco can also be unsafe. Moreover, research on social modeling and visual and other sensory cueing suggests that outdoor social exposure is a serious problem as well.

We now know that:

- Physical exposure to outdoor tobacco smoke can be hazardous
- Outdoor smoke can drift indoors and continue to circulate
- Social exposure to tobacco smoking (seeing smoking, smelling smoke) can normalize smoking; leading to initiation among nonsmokers, especially youth
- Seeing people smoking outdoors or smelling smoke can provide sensory cues for relapse among quitters and make it difficult for smokers who are trying to quit

There are additional concerns with outdoor smoking:

- Thirdhand smoke, carried in on hands, hair and clothing from smoking outdoors, can contaminate indoor environments
- The use of cigarette-like products, such as electronic or e-cigarettes, is a form of social exposure with the potential to normalize smoking and undermine outdoor smoking bans
- Outdoor exposure to smoke from herbal products, such as herbal hookah, can be just as hazardous as exposure to tobacco smoke

Social exposure often co-occurs with physical exposure, but there are many exceptions. Those exposed to thirdhand smoke and smoke that drifts in from outdoors may not actually see smoking occur, although the odour may be detectable. People may see others smoking outdoors at a distance or see smoking-related paraphernalia, such as ashtrays, cigarette packages and butts, but not be physically exposed to smoke. As restrictions on smoking increase, and knowledge of harmful health effects grows,
our tolerance for exposure has decreased, resulting in greater demand for protection in a growing number of outdoor locations (NSRA, 2013).

Physical Exposure

The introduction of indoor smoking bans in public places, hospitality venues and workplaces has reduced indoor exposure and led to improvements in health outcomes. However, exposure to secondhand smoke in outdoor areas can still expose individuals to substantial levels of fine particulate matter (PM$_{2.5}$) that is easily inhaled (Klepeis et al., 2007; Cameron et al., 2010; Baptiste et al., 2011; Kaufman et al., 2011; Wilson et al., 2011). Venues with partial or full roof coverings may have increased concentration levels of smoke, but exposure can be substantial even on patios or other open areas.

As in indoor settings, where exposure increases, as one gets closer to lit cigarettes, the “proximity effect” also occurs outdoors (Repace 2008; Klepeis et al., 2009). Exposure to high levels of tobacco smoke typically occurs within two metres of the sources of smoke, and levels decrease at distances beyond that; however, if there are many smokers, high levels can occur beyond two metres. Stafford et al. (2010) found that measurable outdoor tobacco smoke concentrations (PM$_{2.5}$) were recorded, even with a single active smoker, and levels increased with the number of smokers, indicating a dose-response relationship.

Social Exposure

An important aspect of prevention is to denormalize tobacco smoking so that people are less likely to view it as socially acceptable. Since the vast majority of smokers begin smoking in adolescence, efforts to denormalize tobacco use and decrease negative role modelling are important to protect young adults from future smoking and addiction. Exposure to secondhand smoke contributes importantly to initiation of smoking in youth (Voorhees et al., 2011), and social exposure is the likely mechanism. Decreasing social cues for smoking can increase smokers’ motivation to quit and reduce relapse among recent quitters (Abrams et al., 1988; Zhou et al., 2009). The introduction of smoking bans in indoor public places and at hospitality venues, such as restaurants, bars, hotels and casinos, has decreased overall smoking and encouraged smokers to quit (Fichtenberg et al., 2002; Kennedy et al., 2012; Nagelhout et al., 2012). More recent efforts to eliminate smoking in outdoor public places, including restaurant and bar patios, entrances to buildings, parks, playgrounds, beaches, transit stops, and other outdoor places where smoking occurs reduce the visibility of smoking and likely contribute to denormalization and reduced uptake.
What Do We Know About the Constituents of Outdoor Secondhand Smoke?

Emerging evidence shows how smoking affects outdoor air quality in areas up to four metres away from a lit cigarette when using real-time measurement. Air quality monitors are used to measure the levels of fine particulate matter (PM$_{2.5}$), a marker for tobacco smoke. Particulate levels within one to two metres of a cigarette average 22-72μg/m3 (Klepeis et al., 2007; 2009; Cameron et al., 2010; Kaufman et al., 2011; Wilson et al., 2011). In one real-time measurement study, air quality levels spiked and exceeded 1,000 μg/m3 when measurements were taken within 0.5 metres of a lit cigarette (Klepeis et al., 2007). The high level of variability in exposure concentration is due to environmental conditions, the position of the monitoring equipment in relation to the cigarette source (i.e., upwind or downwind), the proximity effect, and the number and concentration of lit cigarettes.

A per-cigarette, 24-hour incremental exposure concentration is a useful way to examine the accumulation of single exposures to outdoor tobacco smoke to an individual total 24-hour exposure limit (Klepeis et al., 2007). By combining several exposure concentrations over the course of a day, one can compare the total 24-hour exposure to the particulate matter air quality daily limit standards. The levels found by Klepeis and colleagues may actually surpass the WHO and Canada-wide standards for particulate matter air quality levels (25μg/m3 24-hour limit and 30μg/m3 24-hour limit, respectively)(CCME, 2000; WHO Europe, 2005).

“Microplumes” (high concentration streams of smoke rising from cigarettes) have been observed close to cigarette sources, both indoors and outdoors. They can occur due to ground-level turbulence and changing wind directions. If there is little or no wind, a steady plume of smoke rises in the air, disperses, and then falls back down after it cools (Repace, 2005; Klepeis et al., 2009). When there is a single cigarette point source, the distance at which the detectable levels of PM$_{2.5}$ return to background concentrations are at a horizontal distance of 2.0-4.0 metres (Kleipeis et al., 2009). However, on a typical outdoor restaurant or bar patio, many cigarettes may be burning, and the distance from a smoker may be continuously less than this distance. Overall, outdoor tobacco smoke levels can be affected by the number of smokers present, environmental conditions, and the physical layout where the smokers are (e.g., barrier preventing more wind flow). A major difference between indoor and outdoor tobacco smoke is that levels of outdoor tobacco smoke drop immediately to background levels after the cigarette is extinguished, whereas indoor levels persist in the air for several hours (Klepeis et al., 2007). However, in outdoor settings where there are several people smoking, significant levels can persist as long as smoking continues.
Outdoor tobacco smoke can drift from outdoors to indoor environments, especially during warm weather when doors and windows are often open. Bars and restaurants that have indoor smoking bans, but permit outdoor smoking on adjacent patios, have higher indoor PM$_{2.5}$ concentrations than those with no outdoor smoking (Mulcahy et al., 2005; Brennan et al., 2010). Outdoor tobacco smoke concentrations can also be higher if patios are enclosed by walls or even umbrellas, which trap the smoke and make it more difficult for it to disperse. Outdoor patios where smoking is permitted and there are physical or structural barriers (e.g., patio umbrellas or permanent/semi-permanent walls) cannot guarantee smoke-free indoor environments (Kennedy et al., 2010). With higher outdoor tobacco smoke concentrations on patios adjacent to indoor dining areas, there is opportunity for smoke to drift indoors, with or without structural barriers.

How Does Outdoor Smoke Affect Our Health?

There is no safe level of exposure to secondhand smoke. It contains over 4,000 chemicals and compounds, including volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs), of which 70 are known to cause cancer (IARC, 2004; California EPA, 2005; USDHSS, 2006; USDHSS, 2010). It also contains fine particulate matter that causes cardiovascular and respiratory damage and disease. In 2006, the California Air Resources Board listed outdoor tobacco smoke as a toxic air contaminant that can cause or contribute to adverse health effects (CARB, 2006; ANR, 2012). Even short-term exposure to secondhand smoke (30 minutes or less) causes damage, such as vascular injury to endothelial cells (the layer of cells in blood vessels and the lymphatic system), and is a risk factor for cardiovascular disease, increased severity of asthma attacks, and increased risk of respiratory illnesses in children (Pope et al., 2001; USDHSS, 2006; Heiss et al., 2008; IARC, 2009a).

High concentrations of outdoor tobacco smoke can develop in a short period of time. Researchers examined the salivary cotinine and urinary 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanol (NNAL) levels in non-smoking patrons exposed to tobacco smoke on outdoor patios of restaurants and bars over the course of three hours (St. Helen et al., 2012). They observed significantly higher salivary cotinine and urinary NNAL levels after exposure to outdoor tobacco smoke. NNAL is a metabolite of 4-methylnitrosamine-1-(3-pyridyl)-1-butanone (NNK), a known carcinogen in tobacco smoke, and higher levels of NNAL and salivary cotinine indicate an increased risk of cancer associated with these biomarkers.

As with indoor secondhand smoke, concentrated outdoor tobacco smoke can act as a respiratory irritant and poses a health risk for severe asthmatics, since it can trigger an asthma attack (Gilmour et al., 2006). Furthermore, those with acute coronary heart conditions, who are exposed to secondhand smoke, are at greater risk of heart attack and stroke (Heiss et al., 2008; CARB, 2006). Even brief exposures to tobacco smoke can lead to an increased risk of cardiovascular disease among healthy nonsmokers (Heiss et al., 2008). The WHO (2005) has set a fine particulate level (PM$_{2.5}$) of 10μg/m3 as the lowest level at which total, cardiopulmonary and lung cancer death risk increases significantly with long-term outdoor exposure. Since outdoor smoke exposure within two metres can reach levels
comparable to indoors, the health effects are likely to be similar to those from exposure to indoor secondhand smoke if exposure persists for several hours.

Who is affected by Outdoor Secondhand Smoke?

In Ontario in 2011, substantial outdoor exposure was reported (CTUMS, 2011). A majority of Ontario adults (56%) said they were exposed to secondhand smoke outdoors on a sidewalk or in a park; 50% at building entrances; 31% on outdoor bar and restaurant patios, and 19% at a bus stop or shelter. One-third (32%) reported exposure in public places, such as shopping malls, bingo halls, sports arenas, concerts or sporting events; most of the exposure would have originated outdoors since smoking is banned in most of these venues.

While all people are affected by physical exposure to outdoor tobacco smoke at high concentrations, some groups are at risk, even at lower concentrations: the elderly, children, asthmatics, individuals with reduced respiratory function, individuals with increased risk of coronary heart disease, and pregnant women. Pre- and post-natal exposure to any tobacco smoke is particularly harmful for infants and the developing foetus. Children's exposure is most common in the home, and occurs, even when smoking only takes place outdoors (Johansson et al., 2004), because residues from outdoor smoking are brought indoors on hands, hair and clothing. Residents of multi-unit dwellings or town houses can also be exposed to outdoor tobacco smoke from neighbouring balconies, patios and at communal entranceways. As well, pedestrians and those passing through or standing at building entranceways where smokers typically congregate may be exposed to high concentrations of outdoor tobacco smoke.

Wait staff in restaurants and bars where outdoor smoking on patios is permitted are of particular concern. These employees may be continuously exposed to outdoor tobacco smoke for eight-hour shifts, several times a week. A recent review of outdoor exposure in hospitality venues concludes that, under typical conditions, secondhand smoke exposure can put both patrons and wait staff at increased risk of health damage (Licht et al., 2013). Additionally, those working indoors are not protected from outdoor tobacco smoke when it drifts indoors through windows, doors, and air intake systems. Some studies have shown that levels of carcinogenic indoor particulate polycyclic aromatic hydrocarbons (PPAHs) and PM$_{2.5}$ vary with the outdoor levels of these toxicants, when there is smoking on outdoor adjacent patios or at building entranceways (Zhang et al., 2009; Kaufman et al., 2011; Sureda et al., 2012). Indoor PM$_{2.5}$ levels increase with number of lit cigarettes on outdoor patios and within nine metres of building entranceways, which demonstrates that even with indoor smoking bans, the public is not protected from tobacco smoke. Implementing outdoor smoking bans at bars, restaurants and outdoor
public venues, where people are in close proximity to one another, is an important step to protect individuals from the health risks of outdoor tobacco smoke. Furthermore, since secondhand smoke is an occupational hazard for hospitality staff, who face cumulative exposure during working hours, outdoor smoke-free policies offer workplace protection and free owners from potential liability (Zellers et al., 2007; Repace et al., 2013).

How Does Outdoor Smoking Affect Wildlife and the Environment?

Toxic and Non-biodegradable Waste
Cigarette butts are the most common form of litter worldwide and pose an ecological risk to the environment. Cigarette butts are much more than an eyesore on streets, sidewalks, beaches, and other public areas: they contaminate water systems, increase fire risk, are a threat to wildlife, pets and children, and maintain the visibility of smoking long after the cigarette is extinguished.

Filters were added to cigarettes initially in an attempt to reduce harm, but ultimately to reassure smokers when the first scientific studies on the health hazards of smoking were disseminated (Harris, 2011). Filters do not reduce harm from smoking, and they likely discourage smokers from quitting because of the belief that filters are protective (Novotny et al., 2009). Cigarette filters are composed of cellulose acetate fibres, which are combined with other chemicals such as titanium dioxide and triacetin. They are surrounded by paper or rayon wrappings that contain other chemicals and glues, with the addition of alkali metal salts to maintain burning. The cellulose acetate in cigarette filters is non-biodegradable and persists in the environment long after the butts have been discarded. Furthermore, the chemicals found in discarded cigarette butts are introduced into the environment through leaching and storm water runoff to street drains, rivers, lakes, and oceans where they can cause acute toxicity to local organisms (Moerman et al., 2011). Slaughter et al. (2011) reported that a single cigarette butt killed half the small fish in a single litre of water. In some cases, cigarette butts have been found inside marine and aquatic wildlife that mistake them for food.

Cigarette butts are the number one source of shoreline litter and pollution worldwide. Data from the Ocean Conservancy’s International Coastal Cleanup show that worldwide, over the past 25 years, almost 53 million cigarette butts have been collected in one-day annual collections, which make up one-third of total debris items; food wrappers or containers are the next most common debris item at 9% (Ocean Conservancy, 2011). More than 230,000 butts were collected in Canada
over the same period. The cigarette butts that are collected as litter greatly underestimate the total number of cigarette butts actually discarded, estimated to be in the trillions (Novotny & Zhao, 1999).

Tobacco companies have made many efforts to deflect attention and responsibility for cigarette litter away from themselves by sponsoring anti-litter campaigns, developing biodegradable filters and distributing portable ashtrays, so that the responsibility for proper disposal appears to rest with the smoker (Smith & Novotny, 2011). Apart from some volunteer clean-up crews, the direct costs and time to clean up cigarette litter is left to local communities. In the United States alone, clean-up costs for cigarette litter collectively totalled approximately US$11 billion in 2009 (Schultz et al., 2013). In Canada, a new butt collection program involves a partnership between a recycling company and a tobacco manufacturer.

Prohibiting smoking on beaches and in other public places would do much to reduce discarded butts. Using a multi-strategy approach, incorporating beautification, maintaining convenient and easily identifiable cigarette waste bins with clear signs, and having awareness and motivation campaigns, can also help to reduce cigarette litter (Schultz et al., 2013).

Careless smoking is a major cause of preventable fires and fire related deaths. Littered cigarettes that are not properly extinguished or are carelessly discarded cause many outdoor forest fires. Prohibiting smoking in public parks would do much to reduce forest fires.

What Does the General Public Think About Outdoor Smoking?

Smoke-free outdoor spaces are an important public health measure, since their main objective is protection from social and physical exposure to tobacco industry products, which in turn helps to reduce tobacco use among smokers (Hyland et al., 2012). Smoke-free indoor air policies effectively reduce exposure to secondhand smoke and the adverse health effects associated with its exposure (Farrelly et al., 2005; Fong et al., 2006; Meyers et al., 2009). Increasingly, support for outdoor smoking bans is growing in communities and at the provincial level (WHO 2011).

Across the province, a substantial majority of Ontario adults aged 18 and over support further restrictions on outdoor smoking. Results from the 2012 CAMH Monitor Survey show strong levels of support for outdoor smoking bans in various public environments. These levels increased two to six percentage points over 2011, an average increase in overall support of almost 5% in one year.

1 http://www.kab.org/site/PageServer?pagename=sponsors_corporate_partners
Do Outdoor Smoking Bans Cause Economic Harm?

Over 100 studies have found no impact on restaurant and bars sales resulting from indoor bans in these venues, and many of these establishments did not have outdoor patios where smokers could go outside to smoke (Scollo et al., 2003; Luk et al., 2006; CDC, 2012). In Canada, four provinces, seven large cities, and many smaller communities legislated bans in these outdoor venues between 1996 and 2012, and none have reported economic harm from the ban. Further, there are potential economic benefits to businesses that have smoke-free policies (IARC, 2009b). For example, costs to set-up and maintain a smoke-free designated area and costs from higher insurance rates are eliminated with smoke-free policies. There is also the potential for increased patronage from nonsmokers who were formerly deterred by the smoke (IARC, 2009b).

Where are We Now and How Do We Compare?

There is growing public support for outdoor smoke-free policies, and many states, provinces, and several hundred cities and communities around the world have enacted outdoor smoke-free policies. In Ontario alone, there are over 60 municipalities that are leading the way by enacting their own outdoor smoke-free legislation. Outdoor policies restrict or ban smoking in various locations, such as outdoor
patios of restaurants and bars, public parks and beaches, playgrounds, school campuses, transit stops, outdoor stadia and sports facilities, outdoor service lines (e.g., ATMs), common outdoor areas of apartment or condominium buildings, building entranceways, hospital grounds, and outdoor areas of municipal properties. Wherever feasible, outdoor smoking bans should conform to the requirements of the WHO Framework Convention on Tobacco Control (FCTC) Article 8 – Protection from Exposure to Tobacco Smoke (WHO FCTC 2007). Up-to-date information about current smoke-free by-laws across Canada can be found online on the Non-Smokers’ Rights Association smoke-free laws database: http://www.nsra-adnf.ca/cms/smoke-free-laws-database.html.

In New York City, in some city wards in Tokyo, and in the Indian state of Kerala, pedestrian plazas such as Times Square have banned smoking on streets (City of New York, Parks and Recreation, 2012; BBC, 2002; Global Smoke-free Partnership 2009). Closer to home, Kentville, Nova Scotia banned smoking of tobacco and other substances on all municipal property, including streets, roads, sidewalks and trails in 2009; other communities in Nova Scotia have implemented lesser restrictions.iii The city of Calabasas, California, enacted a citywide policy in 2006 that prohibits all public smoking anywhere a nonsmoker can be exposed to outdoor tobacco smoke (Broder, 2006). The policy is comprehensive and does not allow room for misinterpretation, but it does permit some outdoor smoking in a few designated smoking areas with visible signage to denote the smoking area.

Many Ontario municipal health authorities are enacting their own outdoor smoke-free bylaws, including Ottawa, Kingston, Thunder Bay and others, with more under consideration. This parallels the earlier sequence in 2006, when province-wide legislation prohibiting indoor smoking in public places followed more than a decade of increasing municipal indoor smoke-free bylaws.

Having province or territory-wide smoke-free legislation ensures consistent protection and interpretation across all local jurisdictions. Newfoundland and Labrador, Nova Scotia, Alberta, and Yukon have had outdoor smoke-free legislation for patios of restaurants and bars for at least five years (Government of Newfoundland and Labrador 2005; Government of Nova Scotia 2006; Government of Alberta 2008; Government of Yukon 2008). Outdoor bans across Ontario would provide protection from physical exposure in many settings as well as greatly reducing social exposure and benefitting children and youth as well as those trying to quit smoking or avoid relapse.

Since substances other than tobacco can produce toxic smoke (herbal products, marijuana) and since products that look like cigarettes or waterpipe (e-cigarettes or e-hookah) increase social exposure, comprehensive bans would be required to eliminate both physical and social exposure to these hazardous products.

Authors: Roberta Ferrence and Sarah Muir

References

Centre for Addiction and Mental Health. CAMH Monitor, 2012. Toronto, Canada: Centre for Addiction and Mental Health.

Moeremans WW, Potts GE. Analysis of metals leached from smoked cigarette litter. *Tobacco Control* 2011 May 1;20(Suppl. 1):i30-i35.

